Projective quasi-coherent sheaves of modules
نویسندگان
چکیده
منابع مشابه
Derived Categories Of Quasi-coherent Sheaves
2 Derived Structures 4 2.1 Derived Direct Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Derived Sheaf Hom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Derived Inverse Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Existence of Quasi-coherent Flats . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملLOCALLY PROJECTIVE MONOIDAL MODEL STRUCTURE FOR COMPLEXES OF QUASI-COHERENT SHEAVES ON P(k)
We will generalize the projective model structure in the category of unbounded complexes of modules over a commutative ring to the category of unbounded complexes of quasi-coherent sheaves over the projective line. Concretely we will define a locally projective model structure in the category of complexes of quasicoherent sheaves on the projective line. In this model structure the cofibrant obj...
متن کاملComputing Global Extension Modules for Coherent Sheaves on a Projective Scheme
Let X be a projective scheme; let M and N be two coherent OX modules. Given an integer m, we present an algorithm for computing the global extension module Ext(X;M,N ). In particular, this allows one to calculate the sheaf cohomology H(X,N ) and to construct the sheaf corresponding to an element of the module Ext(X;M,N ). This algorithm can be implemented using only the computation of Gröbner b...
متن کاملDescent for Quasi-coherent Sheaves on Stacks
We give a homotopy theoretic characterization of sheaves on a stack and, more generally, a presheaf of groupoids on an arbitary small site C. We use this to prove homotopy invariance and generalized descent statements for categories of sheaves and quasi-coherent sheaves. As a corollary we obtain an alternate proof of a generalized change of rings theorem of Hovey.
متن کاملProjective Resolutions of Coherent Sheaves and Descent Relations between Branes
We notice that, for branes wrapped on complex analytic subvarieties, the algebraic-geometric version of K-theory makes the identification between brane-antibrane pairs and lower-dimensional branes automatic. This is because coherent sheaves on the ambient variety represent gauge bundles on subvarieties, and they can be put in exact sequences (pro-jective resolutions) with sheaves corresponding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1975
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1975.57.457